Computational Modeling of Fluid Flow and Intra-Ocular Pressure following Glaucoma Surgery
نویسندگان
چکیده
BACKGROUND Glaucoma surgery is the most effective means for lowering intraocular pressure by providing a new route for fluid to exit the eye. This new pathway is through the sclera of the eye into sub-conjunctival tissue, where a fluid filled bleb typically forms under the conjunctiva. The long-term success of the procedure relies on the capacity of the sub-conjunctival tissue to absorb the excess fluid presented to it, without generating excessive scar tissue during tissue remodeling that will shut-down fluid flow. The role of inflammatory factors that promote scarring are well researched yet little is known regarding the impact of physical forces on the healing response. METHODOLOGY To help elucidate the interplay of physical factors controlling the distribution and absorption of aqueous humor in sub-conjunctival tissue, and tissue remodeling, we have developed a computational model of fluid production in the eye and removal via the trabecular/uveoscleral pathways and the surgical pathway. This surgical pathway is then linked to a porous media computational model of a fluid bleb positioned within the sub-conjunctival tissue. The computational analysis is centered on typical functioning bleb geometry found in a human eye following glaucoma surgery. A parametric study is conducted of changes in fluid absorption by the sub-conjunctival blood vessels, changes in hydraulic conductivity due to scarring, and changes in bleb size and shape, and eye outflow facility. CONCLUSIONS This study is motivated by the fact that some blebs are known to have 'successful' characteristics that are generally described by clinicians as being low, diffuse and large without the formation of a distinct sub-conjunctival encapsulation. The model predictions are shown to accord with clinical observations in a number of key ways, specifically the variation of intra-ocular pressure with bleb size and shape and the correspondence between sites of predicted maximum interstitial fluid pressure and key features observed in blebs, which gives validity to the model described here. This model should contribute to a more complete explanation of the physical processes behind successful bleb characteristics and provide a new basis for clinically grading blebs.
منابع مشابه
Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...
متن کاملThe Intra-Ocular Pressure of Type 2 Diabetic Patients Comparison in Diabetic Retinopathy Grades
Objective: Retinopathy is a microvascular complication of diabetes in the retina. It is hypothesized the aqueous flow decrease in patients with retinopathy which effects the Intra-ocular pressure (IOP). The purpose of this study is to determine whether a significant correlation exists between IOP and diabetic retinopathy grades. Materials and Methods: Our study is analytic cross sectional. Abo...
متن کامل2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow
Many diseases are related to cerebrospinal .uid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF .ow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing gen...
متن کاملNumerical modeling of three-phase flow through a Venturi meter using the LSSVM algorithm
One of the challenging problems in the Oil & Gas industry is accurate and reliable multiphase flow rate measurement in a three-phase flow. Application of methods with minimized uncertainty is required in the industry. Previous developed correlations for two-phase flow are complex and not capable of three-phase flow. Hence phase behavior identification in different conditions to designing and mo...
متن کاملCerebrospinal Pulsation Hydrodynamics in a 2D Simulation of Brain Ventricles
In this article, dynamics of the cerebrospinal fluid (CSF) was studied, using computational fluid dynamics. Using MRI images of two special cases, a 2-dimensional model of the ventricular system was made. CSF velocity and pressure distribution in ventricular system have high importance since the flow pattern of this liquid has an important effect on intracranial pressure, i.e., ICP, which has a...
متن کامل